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SUMMARY 

The dual variable method for Delaunay triangulations is a network-theoretic method that transforms a set 
of primitive variable finite difference or finite element equations for incompressible flow into an equivalent 
system which is one-fifth the size of the original. Additionally, it eliminates the pressures from the system and 
produces velocities that are exactly discretely divergence-free. In this paper new discretizations of the 
convection term are presented for Delaunay triangulations, the dual variable method is extended to 
tessellations that contain obstacles, and an efficient algorithm for the solution of the dual variable system is 
described. 
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1. INTRODUCTION 

Techniques for generating finite-difference-like representations of the equations of fluid dynamics 
on non-rectangular grids were presented in References 1 and 2. In subsequent  work^^-^ special 
attention was paid to triangular grids, which are the subject of this paper. The basic idea in 
this work, which is a generalization of the concepts used in the MAC method* for rectangular 
grids, is to develop finite-dimensional analogs of the continuity and momentum equations by 
considering complementary or co-volume decompositions of the flow domain. 

In the two-dimensional case, if the continuity equation is discretized on triangular cells, then 
the ‘natural’ complementary cells for the momentum equation are the so-called Voronoi poly- 
g o n ~ . ~  It is somewhat remarkable that such a general method admits a simple network- (or 
graph-) theoretic interpretation. The sides (links) and vertices (nodes) of the Voronoi polygons 
form a directed network N, while those of the triangles constitute its dual N*.’ Each link of 
N carries a flow that is an approximation of the normal mass flux across one of the triangle’s 
sides, and each node of N carries a state that is an approximation of the pressure in one of the 
triangles. The states and flows on N are determined by a system of node laws and link 
characteristics obtained, respectively, from the continuity and momentum equations. 

To be more specific, suppose that the triangulated flow region comprises N triangles having 
L interior sides. Let nj, j =  1, . . . , L, denote a unit normal vector to the jth side, let hj denote the 
length of side j, and let q be an approximation to the midside velocity vector. If we assume for 
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simplicity that the boundary conditions are homogeneous (the treatment of inhomogeneous 
boundary conditions is briefly discussed in Section 3; see Reference 4 for a more complete 
discussion), then the (spatially) discrete continuity equation on triangle i is 

1 aijbj=O, i = l , .  . . , N ,  
j 

where 4j=hjqj-nj is the normal mass flux across side j ,  and 

1 
- 1 

if nj is the outward normal of sidej, 
if nj is the inward normal of side j ,  a,.= 

" 0 otherwise. 

The vector nj defines the direction and sense of the jth link in N. In this context the matrix 
A = [ a i j ] € R N X L  is actually the incidence matrix of N, and equations (1) are its node laws. If we let 
t j  denote the normal velocity component on side j, i.e. t j=qj-nj ,  with 5 =(tl, . . . , <L)T and 
H = diag(hj)ERL L ,  then (1) can be written as 

AH<=O.  (2)  
If the (unsteady) momentum equation is appropriately semi-discretized at the midpoints of 

interior triangle sides, it gives rise to a set of L ordinary differential equations whose vector form 
is 

d t  
-+ dt M ( < ) <  = G - '  ATp+b. (3) 

Here P E  R N  is a vector of discrete pressures associated with the triangle interiors and b E  R L  is 
a discrete body force. The matrix G- ' =diag(l/h;)ERL L ,  where hi is the length of the jth link of 
N (i.e. the jth Voronoi side). Finally, the matrix M ( < ) e R L X L  accounts for the discretization of the 
convection and viscous terms. In network terminology equation (3) constitutes the link character- 
istics of N. Taken together with the node laws of (2), they determine the unknown vectors < and p. 

Once the above identifications have been made, the dual variable method"~'2 (see also 
References 13 and 14) is applicable. The dual variables are states on the nodes of N*, i.e. the 
vertices of the triangles. If the flow region is simply connected, then the boundaries of the Voronoi 
polygons form a basis of elementary cycles for N and an exact representation of the most general 
flows satisfying the node laws can be given in terms of the dual variables. Moreover, a transforma- 
tion of the link characteristics then produces a closed system that determines the dual variables. 

The specific application of these ideas to the system described by equations (2) and (3) proceeds 
as follows. The dimension of the elementary cycle basis is known to be L - N + 1, and each cycle 
gives a simple prescription for the determination of a linearly independent vector in ker A. Thus, 
dim ker A = L - N  + 1, and using the elementary cycles of N, it is straightforward to construct 
a fundamental matrix CER ( L - N c  ') whose columns form a basis for ker A. If we let U = H g ,  then 
by (2), U= Cy for some vector of dual variables, '. Thus, < = H - ' C y and it follows from 
(3) that 

(4) 
dY G H - '  C - + G M ( H - '  Cy)H-'Cy=ATp+Gb. 

Multiplying (4) by CT and observing that CTAT = ( L I C ) ~  = 0, we obtain 

dt 

dY C T G K  ' C -+ CT G M ( H -  ' Cy) H - ' C = CT Gb, 
dt  (5 )  
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which is a system of ordinary differential equation of order L - N + 1 for y. Since the matrix 
CTGH C is symmetric positive-definite, ( 5 )  represents a well-posed initial value problem for 
y provided that the initial velocity field satisfies the discrete divergence-free condition 
H<(O)Eker A.  

There are several reasons for working with the dual rather than the primitive variables. For 
example: 

(1) The semi-discrete dual variable system [equation ( 5 ) ]  is a standard ordinary differential 
equation system, whereas the semidiscrete primitive variable system [equations (2) and (3)] 
is a differential-algebraic equation system incorporating both differential equations and 
algebraic constraints. 

(2) After total (space and time) discretization, the size of the dual variable system is about 
one-fijlh the size of the primitive system. It is important to note that this reduction factor is 
preserved even when the convection and viscous terms in the momentum equation are 
treated implicitly. This reduction is not the result of any further approximation of the 
primitive system; indeed, there is a one-to-one correspondence between the solutions of the 
primitive system and those of the dual variable system. Rather, the reduction is due to the 
exact represenation of the link flows as a coset with respect to a subspace whose dimension 
is about one-fifth that of the discrete velocity and pressure spaces. 

(3) Discrete mass is automatically conserved on the triangular cells and the degree of conserva- 
tion is essentially independent of the accuracy of the solution of the dual variable system. 

(4) The discrete pressures are completely eliminated from the computations. However, they 
can be easily recovered if desired. 

This paper should be considered a sequel to Reference 4. Consequently, we will assume 
a general familiarity with the notions and terminology of that work. Our goal here is to generalize 
the results of Reference 4 in three respects. First, we develop several new discretizations of the 
non-linear convection term in the momentum equation. One of these may be interpreted as 
a generalized centred difference scheme, while another is more properly termed an upwind 
method. The (semi)implicit versions of these schemes are of speical interest since they relieve the 
familiar restrictions on the time-step size that are necessary for stability when the schemes are 
used in their explicit forms. We emphasize again that the additional couplings introduced by an 
implicit discretization of the convection (or viscous) term have no effect on the features of the dual 
variable method mentioned above. In particular, the size reduction factor of five still applies! We 
know of no other computational fluid dynamics method with this property. Second, we describe 
the modifications that are necessary in the dual variable method to accommodate multiply 
connected flow regions. This allows us to treat problems with embedded solids. Third, we analyse 
the structure of the dual variable system and describe a special algorithm for its solution. Finally, 
we illustrate these features with a series of numerical examples. 

2. CONVECTION TERM DISCRETIZATIONS 

In this section we develop discretizations of the convection term in the momentum equation that 
on triangular grids are analogs of the usual centred and upwind schemes. These provide 
alternatives to the one presented in Reference 4, which, as we illustrate below, produces unstable 
results for rather modest-sized time steps. 

Recall that the time-dependent momentum equation can be written as 

q, +v  . (qqT)- vv2q = - v p  + f ,  (6) 
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where q is the divergence-free velocity vector, v is the kinematic viscosity, p and fare the (reduced) 
pressure and body force, V .  is the divergence operator, qqT is a dyadic product, V 2  is the 
Laplacian, and V is the gradient operator. To put this equation in a form more suitable for 
discretization on a triangular grid, we let r be a constant unit vector and take the dot product of 
the momentum equation (6) with r. 

For the viscous stress term, let w denote the scalar vorticity as given by Peyret and Taylor 
(kference 17, p. 16). Then, since V.q=O, it can be shown that 

am 
- (V2q) - r =%, (7) 

where alas denotes differentiation in the direction of s, the unit vector orthogonal to r such that 
r, s form a right-handed system.* 

Now consider the convection term. By again making use of the incompressibility condition 
V - q = 0, we can verify the identity 

CV.(WT)1 * r =  CV(q . r ) l ' q *  

It follows that if q ZO, then 

where a / d q  denotes the directional derivative in the direction of q and 191 is its Euclidean length. 
Since also Vp - r = dp/dr, the directional derivative of p in the direction r, the form of (6)  to be 
discretized is the scalar equation 

All terms other than the convection term are now treated as in Reference 4. For example, the 
directional derivative given by (7) is discretized at the midpoint of a typical side of the triangular 
grid by choosing r to be a unit normal to that side and approximating the values of w at the side's 
vertices. The approximations involve the use of Green's theorem and ultimately yield an 
expression in terms of the velocity components that are normal to the sides of the triangles. See 
Reference 4 for details. 

As in the case of the viscous stress term, we are interested in approximating the right-hand side 
of (8) at P, the midpoint of a typical interior side of the triangular grid when r =np,  a unit normal 
to that side. Suppose that qp is an approximation of q(P),  the velocity at P. As shown in Figure 1, 
let two triangles share the side containing P, and let Q' and R' denote the points of intersection of 
the line through P in the direction of qp with the boundaries of these triangles. As our 'centred' 
approximation at P, we take 

where qR' and qQ'. are the analogs of qp at R' and Q' and the plus or minus sign is used as qp np 2 0 

* By this we mean that s is obtained by rotating r in the counterclockwise direction by 90". 
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Figure 1. A triangular grid showing a portion of the complementary Voronoi polygons (solid lines) 

or not. The 'upwind' approximation is given by 

It is clear that (1 1) follows the usual upwind prescription for differencing a directional derivative. 
It remains to express the schemes given by (10) and (1 1) solely in terms of the velocity components 
that are normal to the sides of the triangles since, as we have seen, these (and the discrete 
pressures) are the fundamental primitive variables. 

We begin by replacing qQ, and q R '  by the corresponding midside velocities qQ and q R  (see 
Figure 1). This falsifies the numerators in (10) and (1 1) by an amount that is proportional to the 
grid gage h. Since the denominators are also of the order of h, the resulting difference approxima- 
tion is not consistent in the classical sense. However, we choose to interpret the differences in (10) 
and (1 1) as differences of averages of flows across respective triangle sides in the direction np. As 
such, q - n p  is assumed constant along each side of the triangle, and the above substitutions are 
consistent with this point of view. Furthermore, the only error analysis of which we are aware for 
co-volume methods 15- l6 does not follow the classical pointwise finite difference error analyses; 
instead, the approach is more like a finite element analysis using an area or L2 norm. So, it is not 
clear that one should expect pointwise consistency in the context of co-volume approaches. The 
authors will report elsewhere on a pointwise consistent upwind scheme for triangular meshes. We 
remark that such a method is considerably more complex and computationally costly than the 
one presented here. 

Numerical experimentation (see e.g. Section 6 )  indicates that the approximations made above 
to (10) and (1 1) do not destroy convergence (in the proper choice of norm) as the mesh gage 
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Figure 2. Local co-ordinate systems 

decreases. In fact, for the results given in Section 6 as well as other numerical experimentation, the 
replacement of qQ, and qR' by the corresponding midside velocities qQ and qR produces steady- 
state solutions which are about as accurate as those produced using the schemes presented in 
References 4 and 7. In addition, the upwind scheme used here is more robust and appears to be 
unconditionally stable. 

The problem now is to represent the midside velocity vectors qp, qQ, etc:, in terms of the normal 
velocity components C p ,  SQ, etc. We first construct the velocities qa and qr at the two Voronoi 
vertices cr and z shown in Figure 2 (recall that these are also nodes of the network N). These 
velocities are then used in formula (16) below to define the midside velocity qp. 

With reference to Figure 2, we let (np, sp), (nQ, sQ), etc., denote unit normal-tangent vector pairs 
to sides P, Q, etc. The sense of each unit normal vector is determined by the direction of the link 
on which it lies, and the sense of the corresponding unit tangent vector is such that the pair forms 
a right-handed system. 

Consider the triangle associated with the vertex cr and let qlp, qb, q$ be provisional? midside 
velocities at P, Q,  S ,  respectively. We define a velocity vector at cr as the barycentric interpolant on 
triangle PQS of the velocities qb, qh and q$, i.e. 

qa=ePqb+eQqb+ e S q $ ,  (12) 
where O P =  Area(AcrQS)/Area(APQS), etc., and where 

qlp = tPnP+ V h P ,  

qb= 5QnQ + I ? h S Q ,  (13) 

q$ = Ssns + I?$%. 

t These quantities depend on information only from the triangle associated with u, whereas the definition of qp, for 
example, also incorporates information from the triangle associated with T. 
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The tangential components q;, qh ,  q i  will now be determined. (We remark that in Reference 4, qa 
was taken to be the average of qb, qb and q i ,  i.e. eP = 8, = OS E 113. As such, qa is independent of 
the location of 0.) 

Following Reference 4, we determine qb, qb and & as functions of the quantities t p ,  tQ and 5s 
by requiring that 

q0 . sp=&,  q , - ~ ~ = q b  and q, - s s=q i .  (14) 

Aq' = B<,  (15) 

Substituting (12) and (13) into (14), we obtain the linear system 

where q ' = ( v ; ,  Y I ~ ,  ~ i ) ~ ,  t = ( < p ,  (0, <SIT, 

1-8, - 6 Q ~ Q . s p  - 0 s ~ s . s p  
- ~ ~ s ~ * s ~  1-8, -~~s,-sQ 
- e p S p - ~ S  -oQsQ.s, i-es 

and 

1 o OQnQ'sp e,ns.sp 
B =  Opnp.sQ 0 Osns.sq . [ 8 p n p ' s s  8QnQ'ss 0 

Observe that the matrix A is strictly diagonally dominant; so, (15) uniquely determines q' in terms 
of 5 .  

We compute qr at the Voronoi vertex T in a similar manner. Then we take 

qP = r P n P  + Y I P S P ,  (16) 
where 

In Reference 4, the weights in (17) were set equal to 1/2, i.e. an arithmetic average was used. This is 
also the scheme used in the numerical examples of Section 6. If one or more of the points 
Q., R,  S ,  T lies on a boundary of the flow region, then we proceed in a somewhat different manner. 
We assume that the normal and tangential velocity components are known at such points.$ 
Suppose for definiteness that Q lies on a boundary and that <a, q a  are the known normal and 
tangential components. Then the second equation of (13) is replaced by 

qh=t:nQ+?:SQ, 

and the second equation of (14) is not used. 
Finally, if the point P itself lies on a boundary, then the procedure reduces to replacing (16) by 

qP= 5:: n,+YIp*s,, 
where 5 ;  and q:: are the known velocity components. 

$ That is, we assume that (consistent) normal boundary fluxes are specified on the boundary of the flow region. If 
pressures are included as part of the boundary conditions, then the subsequent discussion requires a slight modification. 
However, the conclusions remain unchanged. 
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3. MULTIPLY CONNECTED REGIONS 

In Reference 4 the dual variable method was applied to triangular grids on flow regions free of 
obstacles. As mentioned in the introduction, in this case we can represent the class of discretely 
divergence-free flows on the triangular cells as a co-set with respect to the subspace of elementary 
cycles of N. More specifically, let L be the number of links of N (i.e. the number of sides of the 
Voronoi polygons). Then the most general divergence free L-dimensionai flow vector qi that 
satisfies the (non) homogeneous boundary conditions has the representation 

#=#o+v. (18) 
Here #o is any particular such vector and v /  is divergence-free, zero on the boundary, and lies in 
a subspace of dimension L- N + 1, where N is the number of nodes of N (i.e. the number of 
Voronoi vertices). 

It turns out that a basis for this subspace consists of vectors constructed from the elementary 
cycles of N defined by the boundaries of the Voronoi polygons (see Reference 4). At each interior 
node of N, i.e. a Voronoi vertex that is not associated with a triangle having a part of the 
boundary as one of its sides, the corresponding vector is its@ divergence-free. 

To illustrate this last point, consider Aabc, the triangle with vertices a, b, c shown in Figure 3. 
(cf. also Figure 2). Let the associated node cr be an interior node. If q is the velocity field and 
n a unit outward normal to aabc, the boundary of triangle abc, then, since V.q=O,  

where np, qp, etc., have been previously defined and hp, h, and hs are the side lengths of Aabc. In 
view of (19), we define the discrete continuity equation at node B as 

4 P -  4,- ( P S = o ,  (20) 

where 4 p  = hp qp - np, etc.; cf. equation (1). 
The three cycles of N that share o correspond to vertices a, b and c. Figure 3 shows only those 

portions of the cycles that affect the flows at node u. The cycle basis vector at vertex a produces 
flows 4 p  =0, 4, = - 1 and 4s = 1, while at vertices b and c the basis vectors yield 4p  = - 1, & =O, 
& = - 1 and 4p= 1, &= 1, &=O, respectively. Clearly, each of these flow sets satisfy (20). All 
other cycle basis vectors generate the trivial flow set 4p=  4,= &=O. 

Regarding the vector v, it follows from the prescription for the construction of the cycle basis 
that if $ p ,  $, and are the components of v corresponding to links P, Q and S, then 

$ P = - y b + y c ,  $Q'Yc-Ya and $S=Ya-Yb.  

where ya, Yb and yc are arbitrary states on the vertices a, b and c (i.e. dual variables on the nodes of 
N*). Thus, we also have 

IC/P-ll/Q-$S 0, 

which is consistent with (20) and the definition of y in (18), i.e. y is divergence-free. 
Now suppose that the flow region is multiply connected due to the presence of obstacles or 

embedded solids. Although relation (18) remains true and the dimension of the subspace 
containing is still L-  N + 1, the basis vectors provided by the Voronoi boundaries no longer 
span it. In fact, if the boundary of the flow region has K + 1 components because of K interior 
obstacles, then K additional vectors are needed to complete the basis. 
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I I 

Figure 3. An interior node of N 

To obtain these vectors we observe that if the Voronoi boundaries are used to construct the 
links of N in the usual way, then each interior boundary component of the flow region is itself 
surrounded by a closed contour of such links (see Figure 4). This means that the interiors of these 
contours along with the interiors of the Voronoi polygons constitute the faces of the planar 
network N. But it is known'' that for planar networks the contours of the faces form a basis of 
cycles. Thus, the procedure that was used to produce the basis vectors in the simply connected 
case can again be used when the flow region is multiply connected. The difference is that there are 
now K 'exceptional' cycles corresponding to the contours surrounding the interior boundary 
components. We remark that an analogous result was given in Reference 14 and used in the 
determination of the dimension of a particular divergence-free finite element space. 

We illustrate these ideas by considering the chevron-shaped obstacle of Figure 4. The sur- 
rounding contour consists of 22 directed links of N. It generates a basis vector with exactly 22 
non-zero entries corresponding to the links of the contour. Each such entry is either + 1 or - 1 
depending upon whether the link is directed with or against the sense of a traverse of the contour. 
If, for example, we choose to traverse the contour in the counterclockwise direction, then the 
entry corresponding to link P is + 1, whereas that corresponding to link Q is - 1. 

The number of non-zero entries in a basis vector corresponding to a cycle defined by a Voronoi 
polygon is equal to the number of triangles that share the vertex associated with the cycle. If the 
grid consists only of equilateral triangles, then these vectors have exactly six non-zero entries 
(since the Voronoi polygon is a regular hexagon). This observation also applies (in an approxim- 
ate sense) to a grid produced by a Delaunay triangulation of the flow region since then the 
resulting triangles are close to equilateral (see References 18 and 4). In this case it follows that, 
under a proper ordering, that part of the coefficient matrix of the dual variable system generated 
by these basis vectors is sparse and banded. 

On the other hand, as we have just seen, the number of non-zero entries in the basis vector of an 
exceptional cycle equals the number of links that surround the boundary component, and this 



1392 C. A. HALL. T. A. PORSCHING AND G. L. MESINA 

Figure 4. Obstacle and surrounding contour of links 

could be quite large. Consequently, the presence of obstacles in the flow region has the potential 
to destroy the sparse banded structure of the dual variable coefficient matrix. However, it is 
reasonable to expect that the number of such obstacles (and corresponding exceptional cycles) is 
small relative to the total number of cycles in N. Assuming this to be the case, we see that with the 
proper ordering of cycles the coefficient matrix assumes a special block form. Accordingly, we next 
turn to a discussion of a block elimination method for such systems.§ 

4. BLOCK SYSTEMS 

The dual variable linear system is of the form,4 

CTQCy=b, 

where C is the fundamental matrix of cycle vectors, Q is a matrix arising from the discrete 
momentum equations, y is the vector of dual variables, and b is the source term. The coefficient 
matrix is non-symmetric and sparse. For problems which have flow regions with no obstacles, the 
coefficient matrix has a skyline (also called profile, envelope, or variable band) structure*' which is 
confined to a narrow band. However, as noted in Section 3, the introduction of obstacles into the 
flow region produces exceptional cycles that generate non-zero entries falling outside this band; 
these are called outriggers. Outriggers represent couplings between a dual variable associated 
with a Voronoi polygon and one associated with an exceptional cycle. The number of non-zero 
entries in a row or column corresponding to the basis vector associated with an exceptional cycle 
depends on the size of the exceptional cycle; such a row or column may be nearly full. This 
dramatically increases the bandwidth and reduces the efficiency of standard banded- or full- 
matrix solvers. 

4 One might also consider the use of a penalty method to deal with this problem (see e.g. Reference 19). 
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If the dual variables associated with the exceptional cycles are numbered last, the outriggers 
appear in the last rows and columns of the matrix. Such a matrix has a block 2 x 2 structure 

where B1 is a square sparse matrix of skyline structure and B Z 2  is a square (dense) matrix whose 
order is equal to the number of exceptional cycles. Figure 5 shows plots of the non-zero entries of 
typical matrices B. The first corresponds to the mesh containing 1016 triangles for the driven 
cavity flow problem and the second is for the mesh of 2252 triangles used for the nozzle problem 
considered in Section 6. Note that there are outriggers in the border (when obstacles are present), 
that BI1 is of skyline structure and that all the non-zero entries fall within a relatively small 
bandwidth. Also, while B is not symmetric, it is symmetrically non-zero. 

Since standard full- and banded-matrix solvers fail to take full advantage of the structure and 
sparseness pattern of the dual variable system, we considered specialized methods. Both the 
TR21,22 and bordered-banded methodsZ3 were employed to solve the dual variable system; the 
latter performing somewhat better. However, the following method proved to be the most 
efficient. 

If we compatibly partition y and b as ( y l ,  y2)T and (bl,  b2)T, then we can solve the dual variable 
system by first solving a skyline system with multiple right-hand sides. That is, we solve 

B11 c YI Y l  = CBl2 lbll 

for the matrix Y and vector y. Next, we solve the dense (low-order) system 

for y2 and then recover y1 from the equation 

In the solution of (21), we take special cognizance of the zero-non-zero patterns in B ,  The 
solution is carried out with a specially designed skyline solver which does no elimination on rows 
corresponding to zero multipliers and reduces only the columns with indices between those 
designating the first and last non-zero entries in the pivot row. 

5. TEMPORAL DISCRETIZATIONS OF THE CONVECTION TERM 

In Section 2 we presented several spatial approximations of the convection term V * (qqT) in the 
momentum equation (6). To complete this development, we now consider different approaches to 
the discretization of the time dependency of these approximations. Five schemes are considered. 

Scheme 1 : Explicit centred diference 

This is the centred difference scheme (lo), where the components of normal velocity are those at 
the current time and the tangential components of velocity are calculated using (15). The 
discretization of the viscous term in (7) is also done at the current time. As such, the matrix 
Q arising from the discretization of the momentum equation is diagonal and contains only 
a contribution from the temporal term. 
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D r i v e n  C a v i t y  

N o z z l e  

Figure 5. Structure of the dual variable system 
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Scheme 2: Explicit upwind difference 

the convective term. 
This is the same as Scheme 1 except for that the upwind scheme in (1 1) is used to approximate 

Scheme 3: Semi-implicit co-volume integration 

The convection term is approximated by area averaging over adjoining triangles: 
This is the scheme used in Reference 4 and is included here primarily as a basis of comparison. 

where A, and A, are the areas of the triangles7 z and cr, and where r is again a constant unit 
vector (typically, normal to a triangle's side). Furthermore, since V * q  =0, 

CV(q - r ) l *  91u=  v -  C(q - r)ql  lo=-- v * C(q -r)qldA 
A, I 

where (q - r)i = ( <:ni + q?si)  r, hi is the length of side i in triangle cr, ni and si are unit normal and 
tangent vectors on this side, and n is the unit outward normal. The tangential components of 
velocity tf are determined using (15). Hence, the normal component q . n i = t i  is handled 
implicitly (at time level rn + 1); however, the component of q in the direction of r, q r, is handled 
explicitly (at time level rn). For one-dimensional convection, this is analogous to approximating 
( u u , ) ~ + '  by u ~ + ' ( u , ) ~ .  A more standard approach is to approximate ( u u , ) ~ + '  by urn (u,)~". 
With regard to scheme 3, the analogue of this is to replace <?+' by t y  in equation (23) and to 
approximate (q .r ) i  by (q'-r) i ,  where q'=qlp, qh, or q$ as in (13), evaluated at time level rn+ 1. 
Hence, we write 

(q;)"+' 3 (y+ ni +(q: ) "+ ' si ,  

where (tj()"" is approximated by a linear combination of the three normal components of 
velocity ty' ', j =  1,2,3. That is, equation (15) is solved, yielding coefficients ai ,  bi and ci such that 

(t,Ji)"" = ai (Y+ + bi rZ;+ 1 + ci 5s"' 1 .  

When implemented, this modified scheme 3 gave results that were consistent with the Stokes 
flow, i.e. the contribution of the convection term was negligible. On closer inspection it is 
observed that 

(24) 
where q z + '  is the constant vector given in (12), evaluated at time level m+ 1, and where we have 
made use of (14). Further, for all problems considered in this paper, the difference 
< y + l  -(qz+' ani) was of the order of lo-' x ty". That is, (q;)"" turned out to be a small 

(qi) I m + l -  -qo m + l  +( t?+' - -q~+'*ni )ni ,  

7 We refer to the triangles associated with Voronoi vertices T and 0 as triangles t and u. 
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perturbation of the constant vector q:". But this implies, referring to (23) and (24), that 
1 r 3  1 

z-(q;+'.r) 1 C hi(n.ni) ( Y z O  
AU i =  1 

since the final sum is a representation of the discrete divergence of qm, and q" is discretely 
divergence-free. So, in fact, the modified scheme 3 yields a negligible effect from the convection 
term. Note that in the original scheme 3, the tangential components of velocity, tf, are dependent 
on the normal flow across the sides of triangle and the normal flows across the sides of the three 
adjacent triangles (cf. (17)). Apparently, it is this dependency of the tangential velocity com- 
ponents on more than the three normal flows associated with 0 that make the original 
scheme 3 successful. Of course, one could also build this dependency into the modified scheme at 
the expense of having many more couplings in the equation. We do not pursue this modification 
further, preferring instead to investigate the use of partially implicit versions of the directional 
derivative approximations of the convection term developed in Section 2. 

Scheme 4:  Semi-implicit centred diflerence 

This is the centred difference scheme (10) with normal components of velocity approximated at 
the new time level, but all tangential components of velocity evaluated at the current time. Hence, 
in (lo), for example, 

qR" np=qR - np= (nR - np) +qg(sR - np). 

Note that in (10) the distance IR'-Q'I is used. 

Scheme 5 :  Semi-implicit upwind diference 

in ( 1 1 )  

while, for example, 

This is the upwind scheme (1 1) with the same temporal discretization as in scheme 4. Hence, 

qp - np = t y +  ' 

qQ' * nP qQ 'nP= <Q "+ (no np)+ q2j(so np). 
The distances IP-Q'I and IP-R'I are retained in (11). 

6. NUMERICAL EXAMPLES 

6.1. Poiseuille flow in a channel 

As a demonstration of the convergence of the new schemes 1, 2, 4 and 5, we consider 
incompressible flow (unit density) in a channel, R =  [l, 41 x [l,  41, having no-slip walls parallel to 
the x-axis. We also assume unit viscosity and a uniform pressure of zero at the exit, x=4. At the 
inlet boundary (x= l), we assume a parabolic velocity profile q l ( l ,  y ) =  -(y-l)(y-4), 
q2(1, y)=O.O. The true steady-state solution to this problem is 

41(x,y)= -(Y--l)(Y-4), 
42(x, y)=O.O, 
P(X, y ) = 8 - 2 ~ .  
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Table I. Poiseuille flow results 

Number of triangles 

20 84 358 

Size of primitive system 47 
Size of dual variable system 
Semi-Bandwidth of dual variable system 
Maximum cell side 1.4938 

7 
5 

Scheme 3, co-volume integration 
0.2609 

- 

Schemes 2 and 5, upwind difference 
0.2505 

- 

Schemes 1 and 4, centred difference 
0.2676 

- 

198 
36 
17 
0.707 1 

0.0660 
1.84 

0.1395 
1.27 

0.1223 
1.04 

883 
167 
43 
0.3535 

0.0259 
1.35 

0.0649 
1.10 

0.0593 
1.04 

Table I contains the results of utilizing schemes 1-6 on 3 meshes obtained by successively 
decreasing the mesh gage as illustrated in Figure 6. These results were obtained after 10 steps 
using a step size of 1.0, starting with a null initial condition. 

is defined by 11 ei 11 w=(ci eThih:)”’, where h: is the 
length of the ith link and as before hi is the length of the side of a triangle cut by the ith link. If 
H = maxi hi and 11 e? 11 = cHa,  then we estimate the order of convergence a, given 11 e? I( for two 
values H1 and H 2  of H ,  by 

For a mesh function ei, the norm 1 1  ei 11 

In ( II e?’ II / II eH2 I1 1 
In(llH1 I I / l l H 2 I O  * 

a= 

Estimates of a are given in Table I. In terms of the W-norm, we see that 1 Ia12, which is 
consistent with the theoretical results in References 7, 15 and 16 since the triangulations are not 
regular. 

6.2. Driven cavity 

The flow region is a unit square, three sides of which represent no-slip walls (q=O). The top is 
an infinite lid sliding to the left with unit velocity. The flow is incompressible (unit density) and the 
Reynolds number Re= l / v  is determined by specifying the viscosity v. 

The cavity is subdivided into 1016 triangles as shown in Figure 7. The associated primitive 
system has 2501 unknowns, while the dual variable system is 469 x 469. A uniform time step of 
0005 was used and a steady-state solution was said to be obtained when the maximum change in 
normal velocity was less than low3. For Re= 400, Figure 7 also contains comparisons of the dual 
variable method (using schemes 1-5) with those of B ~ r g g r a f . ~ ~  The latter is a finite difference 
solution on a uniform grid with over 3000 unknowns. Note that schemes 1 and 4 gave virtually 
identical results for the steady-state solutions. This is also true of schemes 2 and 5. 
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84 TRIANGLES 

S6 CYCLES' 

S68 

167 

TRIANGLES 

CYCLES' 

Figure 6. Three triangulations of the channel 

For this problem (Re = 400), increasing the time step to 0.5,0.6, 1.5, and 4.0 for schemes 1,2, 3, 
and 4, respectively produces velocities of the order of lo6. Hence, these schemes impose stability 
conditions on the time step. In contrast, the steady-state solution using scheme 5 and a time step 
of 10.0 is virtually identical to that shown in Figure 8. In fact, using scheme 5, similar results are 
obtained with a time step of lo3. This and other numerical evidence supports the conclusion that 
scheme 5 (the semi-implicit upwind scheme) is unconditionally stable. 

Increasing the Reynold's number also gave unstable results when scheme 3 was used. For 
example, a time step of 0.1 and Re = 4000 (v = 0.00025) resulted in unstable calculations. However, 
the upwind scheme remained stable for Re = 4000 and a time step of 10.0. The velocity field for the 
upwind scheme is given in Figure 8 for a time step of 1.0. 
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HORIUlNTR VELOCITY COWPONMT 

RLONG CENI~RLIK x - 0.5 

Figure 7. Comparisons of centreline velocities for a driven cavity (Re=400) 

6.3. Flow past a circular cylinder 

Figure 9 shows a triangulation of the channel [0, 1-53 x [O, 11 containing a circular obstacle of 
radius 0.1 centred at (0*5,05).  This triangulation consists of 586 triangles and 315 vertices. The 
dual tessellation of Voronoi polygons (including boundary tiles) is also given in Figure 9. 

A unit normal velocity is specified on the boundary segment x = 0,O I y I 1, and a unit pressure 
on the segment x = 1.5,O I y I 1. On the boundary segments y = 0 and y = 1, the velocity q = (1,O) 
is specified, and the boundary of the obstacle is assumed to be no-slip (q =O). The viscosity was 
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Figure 8. Velocity field (Re=4000): upwind scheme 

chosen to be 0.002, which corresponds to a Reynold‘s number of 100 (relative to the diameter of 
the obstacle). The network N consists of the 857 links (sides of the 272 tiles which are closed 
Voronoi polygons) and the 586 nodes (circumcentres of triangles). There are also four boundary 
links to the pressure-specified nodes. 

The primitive system has dimension 1447 (= 857 + 4 + 586), while the dual variable system has 
dimension 275 (= 857 + 4 - 586). This is a reduction by a factor of 5.3 in the size of the system to 
be solved at each time step. 

Schemes 3 and 5 were used with success for this problem with a time step of 0.005. However, 
scheme 3 (the co-volume integration scheme) gives unstable results when this time step is 
increased to 0.05. In contrast, the upwind scheme (scheme 5 )  remains bounded even for time steps 
larger than 1.0. Figure 10 illustrates typical plots of the streamlines for various values of time 
when the upwind scheme is used. Vortices are formed beyond the obstacle and are persistently 
shed downstream. 

6.4. Flow in a nozzle section at high incidence 

The geometry of this problem is based on the cross-section of a nozzle similar to that studied 
by Glowinski and Periaux” and is shown in Figure 11; see also Reference 26. The primary 
intent in presenting this example is to illustrate the ability of the method to deal with a multiply 
connected flow region containing more than a single obstacle; in this case the two side-walls of 
the nozzle. 
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Figure 9. Delaunay and Voronoi tessellations for a channel with a circular obstacle 

A free stream enters at the right boundary and impinges on the side-walls of the nozzle at 40". 
The Reynolds number, which is based on the free-stream velocity and the distance between the 
two walls of the nozzle inlet, is 750. A constant pressure is applied along the length of the 
downstream boundary. In contrast to the work presented in Reference 25, we do not attempt to 
simulate a suction effect due to the engine by prescribing a given flux on a cross-section of the 
inlet. A time step of 0.01 was used in conjunction with the upwind scheme (scheme 5 )  for the 
convection term. The computations show that vortices form behind the side-walls and are shed in 
a periodic manner. See Figure 12 for samples of the instantaneous streamline distribution in the 
vicinity of the nozzle. 
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Figure 10. Streamlines of flow past a circular obstacle ( R e =  100): upwind scheme 
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Figure 11. Glowinski's nozzle 
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Figure 12. Streamlines for the nozzle: upwind scheme 
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There were 2252 triangles and 1194 polygonal tiles in the decomposition of the flow region, and 
the network N contained 3318 links. The primitive system was 5570 x 5570, while the dual 
variable system was 1066 x 1066, yielding a reduction factor of 5.4. 

7. CONCLUSIONS 

Numerical solutions of flow problems are often facilitated by the use of triangular grids. The 
equations of incompressible flow can be discretized on the triangular cells of such a grid by 
applying a co-volume technique. While the treatment of the continuity equation is straightfor- 
ward, more care is required with the vector momentum equation. A co-ordinate-free scalar 
equation can be deduced from the momentum equation in which the convection, viscous stress, 
and pressure gradient terms appear as directional derivatives. This allows these terms to be 
approximated in a manner that is compatible with the co-volume methodology. In particular, 
centred and upwind forms of the convection term occur in a completely natural way. The overall 
discrete system gives the node laws and link characteristics of a directed network defined by the 
Voronoi polygons associated with the triangles. Utilizing a transformation related to the dual 
network, one can obtain an equivalent system that is about one-fifth the size of the original. 
Computations involving a variety of problems and geometries show that these network methods 
produce numerical solutions comparable in accuracy to those of the more conventional tech- 
niques on rectangular grids. 
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